
Problem S4: Good Triplets

Problem Description

Andrew is a very curious student who drew a circle with the center at (0,0) and an integer circumference of $C \geq 3$. The location of a point on the circle is the counter-clockwise arc length from the right-most point of the circle.

Andrew drew $N \geq 3$ points at integer locations. In particular, the i^{th} point is drawn at location P_i ($0 \leq P_i \leq C - 1$). It is possible for Andrew to draw multiple points at the same location.

A good triplet is defined as a triplet (a, b, c) that satisfies the following conditions:

- 1 < a < b < c < N.
- The origin (0,0) lies strictly inside the triangle with vertices at P_a , P_b , and P_c . In particular, the origin is **not** on the triangle's perimeter.

Lastly, two triplets (a, b, c) and (a', b', c') are distinct if $a \neq a'$, $b \neq b'$, or $c \neq c'$.

Andrew, being a curious student, wants to know the number of distinct good triplets. Please help him determine this number.

Input Specification

The first line contains the integers N and C, separated by one space.

The second line contains N space-separated integers. The i^{th} integer is P_i ($0 \le P_i \le C - 1$).

The following table shows how the available 15 marks are distributed.

La version française figure à la suite de la version anglaise.

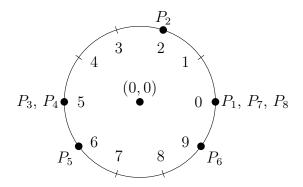
Marks	Number	Circumference	Additional Constraints
Awarded	of Points		
3 marks	$3 \le N \le 200$	$3 \le C \le 10^6$	None
3 marks	$3 \le N \le 10^6$	$3 \le C \le 6000$	None
6 marks	$3 \le N \le 10^6$	$3 \le C \le 10^6$	P_1, P_2, \dots, P_N are all distinct
			(i.e., every location contains at most one point)
3 marks	$3 \le N \le 10^6$	$3 \le C \le 10^6$	None

Output Specification

Output the number of distinct good triplets.

Sample Input

8 10


0 2 5 5 6 9 0 0

Output for Sample Input

6

Explanation of Output for Sample Input

Andrew drew the following diagram.

The origin lies strictly inside the triangle with vertices P_1 , P_2 , and P_5 , so (1, 2, 5) is a good triplet. The other five good triplets are (2, 3, 6), (2, 4, 6), (2, 5, 6), (2, 5, 7), and (2, 5, 8).

La version française figure à la suite de la version anglaise.